Please note that we only supply polymer in granular form for Injection Moulding or Extrusion applications. We do not supply polymer in rod, sheet or block form.

    Our team are available from 8am-5pm and we always aim to get back to you the same day. If you would rather contact us immediately please join us on live chat or give us a call on 0141 952 1900.

    < Back to home

    Does the coding for Polyamides mean anything to designers and processors?

    Polyamides are macromolecules with repeating units linked by amide bonds. Polyamides occur both naturally and artificially. Examples of naturally occurring polyamides are proteins, such as wool and silk. Artificially made polyamides can be made through step-growth polymerization or solid-phase synthesis. This yields materials such as nylons, aramids, and sodium poly(aspartate). Synthetic polyamides are commonly used in textiles, automotive applications, carpets and sportswear due to their high durability and strength.

    Does the coding for polyamides mean anything to designers and processors?

    The coding used to differentiate individual members of the polyamide (nylon) family may mean something to a chemist (the number of methylene groups between polyamide linkages in the polymer chain – strictly the number of carbon atoms). But is the coding of any use to a designer or processor?

    Well for once the chemist’s notation is helpful.  As the code number increases, from 6 to 11, 12 and beyond, the polymer will look and behave more like polyethylene —  tougher and better water resistance but softer, weaker and a lower heat distortion temperature.

    So where does polyamide 66 come in?  I am afraid we become a bit careless with the coding. PA 66 should strictly be written PA 6.6, denoting a double repeat unit, each with 6 methylene units between polyamide links. Hence the properties of PA 6.6 will not be much different from PA 6.  Likewise PA 46 should read PA 4.6, the fewer methylene units making it stiffer and stronger than PA 6 or PA 6.6.   PA 6.10 will have properties slightly in the opposite direction.

    Coding for polyamide copolymers such as PA 6/12 signifies that there is a random distribution of shorter methylene blocks and longer methylene blocks, with subtle differences in properties from PA 9.

    A further detailed article has kindly been suggested here from SpecialChem. Many thanks to them for providing that link.

    Search results

    How useful is Tensile Strength data ?

    When scanning a thermoplastics data sheet for a new project or finding a replacement for an existing grade, the eye tends to get drawn to the values quoted for tensile strength (or more correctly ‘tensile stress at break’) as an indication of the material’s mechanical properties.

    Read more >

    How do electrostatic dissipative (esd) thermoplastics work?

    When two polymeric surfaces are rubbed together static electrical charges are generated on the surfaces. Party tricks involving picking up pieces of paper with a comb are amusing. However, static electricity can be a nuisance in the plastics industry with dust attraction during storage or in service.

    Read more >

    Does FR imply fire resistance?

    When we see ‘FR’ in a plastics grade coding we can sometimes be lulled into believing we have a material that is ‘fire resistant’.

    Read more >